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Abstract. In this paper we use the method of characteristic curves for solving linear partial
differential equations to study the invariant algebraic surfaces of the Rikitake system

ẋ = −µx + y(z + β) ẏ = −µy + x(z − β) ż = α − xy.

Our main results are the following. First, we show that the cofactor of any invariant algebraic
surface is of the form rz + c, where r is an integer. Second, we characterize all invariant algebraic
surfaces. Moreover, as a corollary we characterize all values of the parameters for which the
Rikitake system has a rational or algebraic first integral.

1. Introduction and statement of the main results

We consider the Rikitake systems

ẋ = −µx + y(z + β) = P(x, y, z)

ẏ = −µy + x(z − β) = Q(x, y, z)

ż = α − xy = R(x, y, z)

which is a simple model for describing the Earth’s magnetohydrodynamic dynamo (see for
instance [2]), where x, y and z are real variables; α, β and µ are real parameters. These
systems have been investigated as dynamical systems. For instance, Barge [1] gave conditions
for which the system has two invariant surfaces. Hardy and Steeb [8] derived the conditions
to find periodic orbits by using an ellipsoid bounding condition. Plunian et al [12] studied its
chaotic behaviour. Sachdev and Ramanan [14] discussed its singularity structure. From the
integrability point of view, using the Painlevé method Steeb et al [13] studied their integrability.
Hu and Yan [9] tested the complete integrability by finding regular mirror system near movable
singularities. Labrunie and Conte [10] developed a geometrical method to find some invariant
algebraic surfaces of these systems. Figueiredo et al [5] used an algebraic method to obtain
similar results to those of [10].

Let f (x, y, z) be a real polynomial in the variables x, y and z. The algebraic surface
f (x, y, z) = 0 of R

3 is called an invariant algebraic surface of the Rikitake system if

∂f

∂x
P +

∂f

∂y
Q +

∂f

∂z
R = kf (1)
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for some real polynomial k(x, y, z), which is called the cofactor of f = 0. If f (x, y, z) = 0
is an invariant algebraic surface, then f is also called a Darboux polynomial. From (1) it
follows that if an orbit of the Rikitake system has a point on the invariant algebraic surface
f (x, y, z) = 0, then the whole orbit is contained in this surface.

We claim that the degree of the cofactor k is less than or equal to 1. The claim follows from
the fact that in (1) deg(k)+deg(f ) = max{deg(f )−1+deg(P ), deg(f )−1+deg(Q), deg(f )−
1+deg(R)} � deg(f )+1. Therefore, without loss of generality, we can assume that the cofactor
is of the form

k(x, y, z) = px + qy + rz + c. (2)

We say that a real function

H : R
3 × R −→ R

(x, y, z, t) �−→ H(x, y, z, t)

is a first integral of the Rikitake system, if it is constant on all solution curves (x(t), y(t),
z(t)) of the Rikitake system, that is, H(x(t), y(t), z(t), t) ≡ constant for all values of t for
which the solution (x(t), y(t), z(t)) is defined on R

3. In particular, if the first integral H is
independent on the time and it is a polynomial, then it is called a polynomial first integral. If
the first integral H is a rational function independent on the time, then it is called a rational
first integral.

We say that two first integrals independent on the time H1(x, y, z) and H2(x, y, z) are
independent, if their gradients are linear independent vectors for all point (x, y, z) ∈ R

3 except
perhaps for a set of zero Lebesgue measure. If a Rikitake system has two independent first
integrals, then we say that it is completely integrable. We note that in this case the orbits of the
Rikitake system are contained in the curves {H1(x, y, z) = h1} ∩ {H2(x, y, z) = h2}, where
h1 and h2 vary in R.

An algebraic function H(x, y, z) = C is a solution of the algebraic equation

f0 + f1C + f2C
2 + · · · + fn−1C

n−1 + Cn = 0

where fi(x, y, z) are rational functions, and n is the smallest positive integer for which such
a relation holds. Obviously, any rational function is algebraic. The Rikitake system is said to
be algebraically integrable if it has two independent algebraic first integrals.

So far as we know, only one irreducible Darboux polynomial, i.e. f = x2 − y2 with the
constant cofactor k = −2µ and the condition β = 0, has been found for the Rikitake systems
(see, for instance, [5, 10]).

In this paper, by using the method of characteristic curves for solving linear partial
differential equations, we obtain the following results. The first one gives the character of
the cofactor of each invariant algebraic surface for the Rikitake system.

Proposition 1. If f (x, y, z) is a Darboux polynomial of the Rikitake system, then we can
obtain that the cofactor is of the form k = rz + c with r an integer number, and that the
homogeneous component of the highest degree of f is of the form (x +y)rA(x2 + z2, y2 + z2) if
r is non-negative, or (x−y)−rA(x2 +z2, y2 +z2) if r is non-positive, whereA is a homogeneous
polynomial in the variables x2 + z2 and y2 + z2.

From proposition 1 we obtain immediately the following corollary.

Corollary 2. If f (x, y, z) is a Darboux polynomial with a constant cofactor of the Rikitake
system, then f has even degree.
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Our next result shows the relationship between invariant algebraic surfaces and first
integrals of the Rikitake system.

Proposition 3. A Rikitake system has a Darboux polynomial f (x, y, z) with a constant
cofactor k if and only if the function H(x, y, z, t) = f (x, y, z) exp(−kt) is a first integral.

In this paper the first integrals of the form given in proposition 3 with k �= 0 are called
invariants.

The following proposition is known, for a proof see [4].

Proposition 4. Assume that f (x, y, z) is a polynomial function in the real polynomial ring
R[x, y, z]. Let f = f

n1
1 · · · f nm

m be the factorization of f in irreducible factors over
R[x, y, z]. Then for the Rikitake system, f is a Darboux polynomial with cofactor kf if
and only if each fi is a Darboux polynomial with cofactor kfi for i = 1, 2, . . . , m. Moreover,
kf = n1kf1 + · · · + nmkfm .

The next theorem is our main result, in it we characterize all Darboux polynomials of the
Rikitake system.

Theorem 5. The Rikitake system has invariant algebraic surfaces if and only if one of the
following three cases holds.

(a) If µ = α = 0, then H1 = x2 + z2 + 2βz and H2 = y2 + z2 − 2βz are two polynomial first
integrals. Consequently, in this case the Rikitake system is completely integrable.

(b) If µ = β = 0 and α �= 0, then H = x2 − y2 is a polynomial first integral.
(c) If β = 0, then the Darboux polynomials are f = x + y with the cofactor k = z − µ and

f = x − y with the cofactor k = −z − µ.

From theorem 5 we easily obtain the following corollary.

Corollary 6. For Rikitake systems the following statements hold.

(a) There are Rikitake systems having irreducible polynomial first integrals of any even degree.
(b) The Rikitake systems have no polynomial first integrals of odd degree.
(c) The unique irreducible invariant for the Rikitake systems is (x2 − y2) exp(−2µt) when

β = 0.

The following proposition characterizes the rational and algebraic first integrals of a
polynomial vector field.

Proposition 7. Let X be a polynomial vector field in R
n. Then the following statements hold.

(a) If the polynomial functions f and g are relative prime, then f/g is a rational first integral
of X if and only if f and g are both Darboux polynomials with the same cofactor.

(b) The vector field X is algebraically integrable if and only if it has n − 1 independent
rational first integrals.

The first statement can be proved easily from the definitions. The second statement is a
corollary of lemma 2.4 of Goriely [6].

From theorem 5 and proposition 7 we can obtain the following result.

Corollary 8. For Rikitake systems the following statements hold.

(a) The Rikitake system has a rational first integral if and only if either µ = α = 0, or
µ = β = 0 and α �= 0.
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(b) The Rikitake system is algebraically integrable if and only if µ = α = 0. Moreover, under
this condition the Rikitake system has a solution given by the following implicit functions:

x2 + z2 + 2βz = h1 y2 + z2 − 2βz = h2

±
∫

dz√
h1 + β2 − (z + β)2

√
h2 + β2 − (z − β)2

= t + h3

which is the elliptic integral of first kind (see [7]), where h1, h2 and h3 are integrating
constants.

This paper is organized as follows. In section 2, we prove propositions 1, 3 and 4. The
proof of theorem 5 is given in section 3. Finally, in section 4 we summarize the results of this
paper.

2. Proof of propositions 1, 3 and 4

Proof of proposition 1. Assume that

f (x, y, z) =
n∑

i=0

fi(x, y, z)

is a Darboux polynomial of the Rikitake system, where fi is a homogeneous polynomial of
degree i for i = 0, 1, . . . , n. The cofactor is that given in (2).

Substituting f and (2) into equality (1) and identifying the homogeneous components of
degree n + 1, we obtain

yz
∂fn

∂x
+ xz

∂fn

∂y
− xy

∂fn

∂z
= (px + qy + rz)fn. (3)

In what follows, in order to prove our proposition we will use the method of characteristic
curves for solving linear partial differential equations (see for instance, chapter 2 of [3]). The
characteristic equation associated with (3) is

dx

dz
= − z

x

dy

dz
= − z

y

its general solution is

x2 + z2 = c1 y2 + z2 = c2

where c1 and c2 are arbitrary constants.
We consider the change of variables

u = x2 + z2 v = y2 + z2 w = z. (4)

Correspondingly, the inverse transformation is

x = ±
√
u − w2 y = ±

√
v − w2 z = w. (5)

From equation (3) we obtain the ordinary differential equation

−(±√u − w2
)(±√v − w2

)df n

dw
= [

p
(±√u − w2

)
+ q
(±√v − w2

)
+ rw

]
f n

where f n(u, v,w) = fn(x, y, z), and u and v are fixed. In the following, if we do not say
anything, we will always denote by R(u, v,w) the function R(x, y, z), written in the variables
u, v and w by using (5).
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Solving this equation we find that for xy > 0

f n = A(u, v)

∣∣∣2√(u − w2)(v − w2) + 2w2 − (u + v)

∣∣∣−r/2

× exp

(
−p

(
±arcsin

w√
v

))
exp

(
−q

(
±arcsin

w√
u

))

for xy < 0

f n = A(u, v)

∣∣∣2√(u − w2)(v − w2) + 2w2 − (u + v)

∣∣∣r/2

× exp

(
−p

(
±arcsin

w√
v

))
exp

(
−q

(
±arcsin

w√
u

))

where A(u, v) is an arbitrary function in u and v. Correspondingly, for xy > 0 we have

fn = A(x2 + z2, y2 + z2)(x − y)−r

× exp

(
−p

(
±arcsin

z√
y2 + z2

))
exp

(
−q

(
±arcsin

z√
x2 + z2

))

and for xy < 0 we have

fn = A(x2 + z2, y2 + z2)(x + y)r

× exp

(
−p

(
±arcsin

z√
y2 + z2

))
exp

(
−q

(
±arcsin

z√
x2 + z2

))
.

In order for fn to be a homogeneous polynomial, we must have p = q = 0, the function A

a homogeneous polynomial in x2 + z2 and y2 + z2, and r a convenient integer. More precisely,
if r is a non-negative (respectively non-positive) integer, then fn = (x + y)rA(x2 + z2, y2 + z2)

(respectively, fn = (x − y)−rA(x2 + z2, y2 + z2). This completes the proof of the
proposition. �

Proof of proposition 3. The proof of this proposition is easy, and follows in the same way as
the proof of proposition 2 of [11]. Since the proof is short we give it.

Assume that f (x, y, z) is a Darboux polynomial of the Rikitake system with the constant
cofactor k. Then from the definition of the Darboux polynomial

df

dt
= ∂f

∂x
P +

∂f

∂y
Q +

∂f

∂z
R ≡ kf.

Therefore, we have

dH

dt
= exp(−kt)

df

dt
− kf exp(−kt) ≡ 0

that is,H(x, y, z, t) is a first integral. Consequently, the proof follows from the above equation.
This proves the proposition. �
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Proof of proposition 4. Sufficiency. Since fi , for i = 1, . . . , m, is a Darboux polynomial
with cofactor kfi , we have

df

dt
= ∂(f

n1
1 · · · f nm

m )

∂x
P +

∂(f
n1
1 · · · f nm

m )

∂y
Q +

∂(f
n1
1 · · · f nm

m )

∂z
R

=
m∑
i=1

nif
ni−1
i

∂fi

∂x

∏
1�j�n
j �=i

f
nj
j P +

m∑
i=1

nif
ni−1
i

∂fi

∂y

∏
1�j�n
j �=i

f
nj
j Q

+
m∑
i=1

nif
ni−1
i

∂fi

∂z

∏
1�j�n
j �=i

f
nj
j R

=
m∑
i=1

nif
ni−1
i

(
∂fi

∂x
P +

∂fi

∂y
Q +

∂fi

∂z
R

) ∏
1�j�n
j �=i

f
nj
j

=
m∑
i=1

nikfi f
ni
i

∏
1�j�n
j �=i

f
nj
j =

m∑
i=1

nikfi

∏
1�j�n

f
nj
j =

m∑
i=1

nikfi f.

This proves that f = f
m1
1 · · · f nm

m is a Darboux polynomial with the cofactor kf = n1kf1 +
· · · + nmkfm .

Necessity. Assume that f is a Darboux polynomial with the cofactor kf , and f = f
n1
1 · · · f nm

m

is the factorization of f in irreducible factors over R[x, y, z]. Then from this last equality we
obtain

df

dt
=

m∑
i=1

nif
ni−1
i

(
∂fi

∂x
P +

∂fi

∂y
Q +

∂fi

∂z
R

) ∏
1�j�n
j �=i

f
nj
j = kf f = kf

∏
1�j�n

f
nj
j .

Since fi and fj are coprime for 1 � i, j � m and i �= j , we have for every given l (1 � l � m),
that fl divides ∂fl

∂x
P + ∂fl

∂y
Q + ∂fl

∂z
R in R[x, y, z]. Let

kfl = 1

fl

(
∂fl

∂x
P +

∂fl

∂y
Q +

∂fl

∂z
R

)
.

This means that fl is a Darboux polynomial with the cofactor kfl . Moreover, we have
kf = ∑m

i=1 nikfi . This completes the proof of the proposition. �

3. The proof of theorem 5

According to proposition 1 we first consider the case in which the cofactor is a constant.
Assume that

f (x, y, z) =
n∑

i=0

fi(x, y, z)

is a Darboux polynomial of the Rikitake system with the constant cofactor k(x, y, z) = c,
where fi is a homogeneous polynomial of degree i for i = 0, 1, . . . , n. From corollary 2 we
can assume that n = 2m, where m is a positive integer.
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Substituting f and k = c into equation (1) and identifying the terms of the same degree,
we obtain

yz
∂f2m

∂x
+ xz

∂f2m

∂y
− xy

∂f2m

∂z
= 0 (6)

yz
∂f2m−1

∂x
+ xz

∂f2m−1

∂y
− xy

∂f2m−1

∂z
= (µx − βy)

∂f2m

∂x
+ (µy + βx)

∂f2m

∂y
+ cf2m (7)

yz
∂fi

∂x
+ xz

∂fi

∂y
− xy

∂fi

∂z
= (µx − βy)

∂fi+1

∂x
+ (µy + βx)

∂fi+1

∂y
+ cfi+1 − α

∂fi+2

∂z
(8)

cf0 − α
∂f1

∂z
= 0 (9)

for i = 2m − 2, 2m − 3, . . . , 1, 0.
From proposition 1 and its proof we find that the solution of (6) is

f2m =
m∑
i=0

ami (x
2 + z2)m−i (y2 + z2)i

where ami is a real constant for i = 0, 1, . . . , m.
Introducing f2m into equation (7) and doing some calculations, we have

yz
∂f2m−1

∂x
+ xz

∂f2m−1

∂y
− xy

∂f2m−1

∂z
=

m∑
i=0

(2mµ + c)ami (x
2 + z2)m−i (y2 + z2)i

−
m−1∑
i=0

2µ[(m − i)ami + (i + 1)ami+1](x2 + z2)m−i−1(y2 + z2)iz2

−
m−1∑
i=0

2β[(m − i)ami − (i + 1)ami+1](x2 + z2)m−i−1(y2 + z2)ixy.

Using the transformations (4) and (5), from this last equation we obtain the following ordinary
differential equation:

df 2m−1

dw
= −

m∑
i=0

(2mµ + c)ami u
m−ivi

1

(±√
u − w2)(±√

v − w2)

+
m−1∑
i=0

2µ[(m − i)ami + (i + 1)ami+1]um−i−1viw2 1

(±√
u − w2)(±√

v − w2)

+
m−1∑
i=0

2β[(m − i)ami − (i + 1)ami+1]um−i−1vi.

Solving this equation we obtain

f 2m−1 = −
m∑
i=0

(2mµ + c)ami u
m−ivi

∫
dw

(±√
u − w2)(±√

v − w2)

+
m−1∑
i=0

2µ[(m − i)ami + (i + 1)ami+1]um−i−1vi
∫

w2 dw

(±√
u − w2)(±√

v − w2)

+
m−1∑
i=0

2β[(m − i)ami − (i + 1)ami+1]um−i−1viw + f
∗
2m−1(u, v)

where f
∗
2m−1 is an arbitrary function in u and v.
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An easy computation gives∫
w2 dw√

u − w2
√
v − w2

= −
∫ √

u − w2

√
v − w2

dw + u

∫
dw√

u − w2
√
v − w2

.

Since ∫
dw√

u − w2
√
v − w2

and
∫ √

u − w2

√
v − w2

dw

are elliptic integrals of the first and second kind, respectively (see, for instance, [7]),
in order for f2m−1 to be a homogeneous polynomial of degree 2m − 1, we must have
f

∗
2m−1(x

2 + z2, y2 + z2) ≡ 0 and

(2mµ + c)ami = 0 i = 0, 1, . . . , m

µ[(m − i)ami + (i + 1)ami+1] = 0 i = 0, 1, . . . , m − 1.
(10)

Therefore,

f2m−1 =
m−1∑
i=0

[(m − i)ami − (i + 1)ami+1](x2 + z2)m−i−1(y2 + z2)i(2βz)

=
m−1∑
i=0

1∑
j=0

(−1)j
(
m − i − j

1 − j

)(
i + 1
j

)
ami+j (x

2 + z2)m−1−i (y2 + z2)i(2βz).

(11)

From the first equation of (10) we have c = −2mµ. Otherwise, ami = 0 for
i = 0, 1, . . . , m, and then f2m ≡ 0. By the second equation of (10) we obtain

µ = 0 or µ �= 0 and (m − i)ami + (i + 1)ami+1 = 0 for i = 0, 1, . . . , m − 1.

(12)

Case 1: µ = 0. Then c = 0. Introducing f2m and f2m−1 into equation (8) with i = 2m − 2
and doing some calculations, we obtain

yz
∂f2m−2

∂x
+ xz

∂f2m−2

∂y
− xy

∂f2m−2

∂z

= −
m−2∑
i=0

4β2
[
(m − i)(m − i − 1)ami − 2(m − i − 1)(i + 1)ami+1

+(i + 2)(i + 1)ami+2

]
(x2 + z2)m−i−2(y2 + z2)ixyz

−
m−1∑
i=0

2α
[
(m − i)ami + (i + 1)ami+1

]
(x2 + z2)m−i−1(y2 + z2)iz.

From this last equation we obtain the following ordinary differential equation taking into
account the changes (4) and (5):

f 2m−2

dw
=

m−2∑
i=0

4β2
[
(m − i)(m − i − 1)ami

−2(m − i − 1)(i + 1)ami+1 + (i + 2)(i + 1)ami+2

]
um−i−2viw

+
m−1∑
i=0

2α
[
(m − i)ami + (i + 1)ami+1

]
um−i−1vi

w

(±√
u − w2)(±√

v − w2)
.
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Since ∫
2w dw√

u − w2
√
v − w2

= log
∣∣∣2√u − w2

√
v − w2 + 2w2 − (u + v)

∣∣∣ (13)

in order for f2m−2(x, y, z) = f 2m−2(u, v,w) to be a homogeneous polynomial in x, y and z,
we must have

α
[
(m − i)ami + (i + 1)ami+1

] = 0 for i = 0, 1, . . . , m − 1. (14)

Therefore,

f2m−2 =
m−2∑
i=0

2∑
j=0

(−1)j
(
m − i − j

2 − j

)(
i + j

j

)
ami+j (x

2 + z2)m−i−2(y2 + z2)i(2βz)2

+
m−1∑
i=0

am−1
i (x2 + z2)m−1−i (y2 + z2)i

where am−1
i is a real constant for i = 0, 1, . . . , m − 1. The second line of the expression of

f2m−2 is an arbitrary polynomial in the variables u and v which appears after the integration
of df 2m−2/dw.

Subcase 1: α = 0. Introducing f2m−2 into equation (8) with i = 2m − 3, we obtain

yz
∂f2m−3

∂x
+ xz

∂f2m−3

∂y
− xy

∂f2m−3

∂z
= −βy

∂f2m−2

∂x
+ βx

∂f2m−2

∂y

= −
m−3∑
i=0

2β

[
(m − 2 − i)

2∑
j=0

(−1)j
(
m − i − j

2 − j

)(
i + j

j

)
ami+j

− (i + 1)
2∑

j=0

(−1)j
(
m − i − 1 − j

2 − j

)(
i + 1 + j

j

)
ami+1+j

]

×(x2 + z2)m−3−i (y2 + z2)ixy(2βz)2

−
m−2∑
i=0

2β
[
(m − 1 − i)am−1

i − (i + 1)am−1
i+1

]
(x2 + z2)m−i−2(y2 + z2)ixy

= −
m−3∑
i=0

6β
3∑

j=0

(−1)j
(
m − i − j

3 − j

)(
i + j

j

)

×ami+j (x
2 + z2)m−3−i (y2 + z2)ixy(2βz)2

−
m−2∑
i=0

2β
1∑

j=0

(−1)j
(
m − 1 − i − j

1 − j

)(
i + j

j

)

×am−1
i+j (x2 + z2)m−2−i (y2 + z2)ixy.

In the above computations we used the following
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Lemma 9. For any non-negative integersm, s and i satisfyingm > s+i, the following equality
hold.

(m − s − i)

s∑
j=0

(−1)j
(
m − i − j

s − j

)(
i + j

j

)
ai+j

−(i + 1)
s∑

j=0

(−1)j
(
m − i − 1 − j

s − j

)(
i + 1 + j

j

)
ai+1+j

= (s + 1)
s+1∑
j=0

(−1)j
(
m − i − j

s + 1 − j

)(
i + j

j

)
ai+j .

Proof. By straightforward computations we have

(m − s − i)

s∑
j=0

(−1)j
(
m − i − j

s − j

)(
i + j

j

)
ai+j

−(i + 1)
s∑

j=0

(−1)j
(
m − i − 1 − j

s − j

)(
i + 1 + j

j

)
ai+1+j

= (m − s − i)

(
m − i

s

)
ai + (m − s − i)

×
s∑

j=1

(−1)j
(
m − i − j

s − j

)(
i + j

j

)
ai+j

+(i + 1)
s∑

j=1

(−1)j
(
m − i − j

s + 1 − j

)(
i + j

j − 1

)

×ai+j + (i + 1)(−1)s+1

(
i + 1 + s

s

)
ai+1+s

= (s + 1)

(
m − i

s + 1

)
ai + (−1)s+1(s + 1)

(
i + s + 1
s + 1

)
ai+s+1

+
s∑

j=1

(−1)j
[
(m − s − i)

(
m − i − j

s − j

)(
i + j

j

)

+ (i + 1)

(
m − i − j

s + 1 − j

)(
i + j

j − 1

)]
ai+j

= (s + 1)

(
m − i

s + 1

)
ai + (−1)s+1(s + 1)

(
i + s + 1
s + 1

)
ai+s+1

+
s∑

j=1

(−1)j
[
(s + 1 − j)

(
m − i − j

s + 1 − j

)(
i + j

j

)

+

(
m − i − j

s + 1 − j

)(
i + j

j

)
j

]
ai+j

= (s + 1)
s+1∑
j=0

(−1)j
(
m − i − j

s + 1 − j

)(
i + j

j

)
ai+j .
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This proves the lemma. �

Using the transformations (4) and (5) and working in a similar way to solving f2m−1, we
obtain

f2m−3 =
m−3∑
i=0

3∑
j=0

(−1)j
(
m − i − j

3 − j

)(
i + j

j

)
ami+j (x

2 + z2)m−3−i (y2 + z2)i(2βz)3

+
m−2∑
i=0

1∑
j=0

(−1)j
(
m − 1 − i − j

1 − j

)(
i + j

j

)

×am−1
i+j (x2 + z2)m−2−i (y2 + z2)i(2βz).

Substituting f2m−3 into equation (8) with i = 2m− 4 and doing some calculations, which
are similar to the proof of f2m−2, we have

yz
∂f2m−4

∂x
+ xz

∂f2m−4

∂y
− xy

∂f2m−4

∂z
= −

m−4∑
i=0

8β
4∑

j=0

(−1)j
(
m − i − j

4 − j

)(
i + j

j

)

×ami+j (x
2 + z2)m−4−i (y2 + z2)ixy(2βz)3

−
m−3∑
i=0

4β
2∑

j=0

(−1)j
(
m − 1 − i − j

2 − j

)(
i + j

j

)

×am−1
i+j (x2 + z2)m−3−i (y2 + z2)ixy(2βz).

Working in a similar way to solving f2m−2 we obtain that

f2m−4 =
m−4∑
i=0

4∑
j=0

(−1)j
(
m − i − j

4 − j

)(
i + j

j

)
ami+j (x

2 + z2)m−4−i (y2 + z2)i(2βz)4

+
m−3∑
i=0

2∑
j=0

(−1)j
(
m − 1 − i − j

2 − j

)(
i + j

j

)

×am−1
i+j (x2 + z2)m−3−i (y2 + z2)i(2βz)2 +

m−2∑
i=0

am−2
i (x2 + z2)m−2−i (y2 + z2)i .

Introducing f2m−4 into equation (8) with i = 2m − 5 and in a similar way to the proof of
f2m−3 we have

f2m−5 =
m−5∑
i=0

5∑
j=0

(−1)j
(
m − i − j

5 − j

)(
i + j

j

)
ami+j (x

2 + z2)m−5−i (y2 + z2)i(2βz)5

+
m−4∑
i=0

3∑
j=0

(−1)j
(
m − 1 − i − j

3 − j

)(
i + j

j

)

×am−1
i+j (x2 + z2)m−4−i (y2 + z2)i(2βz)3

+
m−2∑
i=0

1∑
j=0

(−1)j
(
m − 2 − i − j

1 − j

)(
i + j

j

)

×am−2
i+j (x2 + z2)m−3−i (y2 + z2)i(2βz).
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By recursive computations we can obtain for s = 3, 4, . . . , m − 1

f2m−2s =
m−2s∑
i=0

2s∑
j=0

(−1)j
(
m − i − j

2s − j

)(
i + j

j

)
ami+j (x

2 + z2)m−2s−i (y2 + z2)i(2βz)2s

+
m−2s+1∑
i=0

2s−2∑
j=0

(−1)j
(
m − 1 − i − j

2s − 2 − j

)(
i + j

j

)

×am−1
i+j (x2 + z2)m−2s+1−i (y2 + z2)i(2βz)2s−2

+
m−2s+2∑
i=0

2s−4∑
j=0

(−1)j
(
m − 2 − i − j

2s − 4 − j

)(
i + j

j

)

×am−2
i+j (x2 + z2)m−2s+2−i (y2 + z2)i(2βz)2s−4

+ · · ·

+
m−s−1∑
i=0

2∑
j=0

(−1)j
(
m − s − 1 − i − j

2 − j

)(
i + j

j

)

×am−s−1
i+j (x2 + z2)m−s−3−i (y2 + z2)i(2βz)2

+
m−s∑
i=0

am−s
i (x2 + z2)m−s−i (y2 + z2)i

=
s∑

h=0

m−2s+h∑
i=0

2(s−h)∑
j=0

(−1)j
(
m − h − i − j

2(s − h) − j

)(
i + j

j

)

×am−h
i+j (x2 + z2)m−2s+h−i (y2 + z2)i(2βz)2(s−h)

and

f2m−2s−1 =
s∑

h=0

m−2s+h−1∑
i=0

2(s−h)+1∑
j=0

(−1)j
(

m − h − i − j

2(s − h) + 1 − j

)(
i + j

j

)

×am−h
i+j (x2 + z2)m−2s+h−1−i (y2 + z2)i(2βz)2(s−h)+1.

We note that in the above two sums, if l < 0, then the sum
∑l

i=o Ai = 0 for any Ai . Unifying
the expressions of f2m−2s and f2m−2s−1 we find that for s = 0, 1, . . . , 2m − 1

f2m−s =
[s/2]∑
h=0

m−s+h∑
i=0

s−2h∑
j=0

(−1)j
(
m − h − i − j

s − 2h − j

)(
i + j

j

)

×am−h
i+j (x2 + z2)m−s+h−i (y2 + z2)i(2βz)s−2h.

Here, [·] denotes the integer part function. Therefore, we have

f = f2m + f2m−1 + · · · + f2 + f1 =
2m−1∑
s=0

[s/2]∑
h=0

m−s+h∑
i=0

s−2h∑
j=0

(−1)j
(
m − h − i − j

s − 2h − j

)(
i + j

j

)

×am−h
i+j (x2 + z2)m−s+h−i (y2 + z2)i(2βz)s−2h.
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For every givenh ∈ {0, 1, . . . , m−1}, we know from the calculations offs for s = 1, 2, . . . , 2m
that am−h

i for i = 0, 1, . . . , m − h appear in fj with 1 � j � 2m − 2h. Hence, in the above
expression the sum of the terms containing am−h

i for i = 0, 1, . . . , m − h is
2m−1∑
s=2h

m−s+h∑
i=0

s−2h∑
j=0

(−1)j
(
m − h − i − j

s − 2h − j

)(
i + j

j

)
am−h
i+j (x2 + z2)m−s+h−i (y2 + z2)i(2βz)s−2h

=
2m−1−2h∑

s=0

m−h−s∑
i=0

s∑
j=0

(−1)j
(
m − h − i − j

s − j

)(
i + j

j

)

×am−h
i+j (x2 + z2)m−s−h−i (y2 + z2)i(2βz)s

=
m−h∑
s=0

m−h−s∑
i=0

s∑
j=0

(−1)j
(
m − h − i − j

s − j

)(
i + j

j

)

×am−h
i+j (x2 + z2)m−s−h−i (y2 + z2)i(2βz)s.

Therefore, adding the previous expressions for h = 0, 1, . . . , m − 1 we obtain

f =
m∑
s=0

m−s∑
i=0

s∑
j=0

(−1)j
(
m − (i + j)

s − j

)(
i + j

j

)
ami+j (x

2 + z2)m−s−i (y2 + z2)i(2βz)s

+
m−1∑
s=0

m−1−s∑
i=0

s∑
j=0

(−1)j
(
m − 1 − (i + j)

s − j

)(
i + j

j

)

×am−1
i+j (x2 + z2)m−1−s−i (y2 + z2)i(2βz)s

+
m−2∑
s=0

m−2−s∑
i=0

s∑
j=0

(−1)j
(
m − 2 − (i + j)

s − j

)(
i + j

j

)

×am−2
i+j (x2 + z2)m−2−s−i (y2 + z2)i(2βz)s

+ · · ·

+
1∑

s=0

1−s∑
i=0

s∑
j=0

(−1)j
(

1 − (i + j)

s − j

)(
i + j

j

)

×a1
i+j (x

2 + z2)1−s−i (y2 + z2)i(2βz)s.

Since in the sum
m−s∑
i=0

s∑
j=0

(−1)j
(
m − (i + j)

s − j

)(
i + j

j

)
ami+j (x

2 + z2)m−s−i (y2 + z2)i(2βz)s

the term containing amh for h ∈ {0, 1, . . . , m} is

h∑
j=0

(−1)j
(
m − h

s − j

)(
h

j

)
amh (x

2 + z2)m−s−(h−j)(y2 + z2)h−j (2βz)s

where if s − j < 0 or s − j > m − h, then
(

m−h

s−j

)
= 0. So in the polynomial f the sum of

all terms containing amh is

m−h∑
i=0

h∑
j=0

(−1)j
(
m − h

i

)(
h

j

)
amh (x

2 + z2)m−h−i (y2 + z2)h−j (2βz)i+j .
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Therefore,

m∑
s=0

m−s∑
i=0

s∑
j=0

(−1)j
(
m − (i + j)

s − j

)(
i + j

j

)
ami+j (x

2 + z2)m−s−i (y2 + z2)i(2βz)s

=
m∑

h=0

amh

m−h∑
i=0

h∑
j=0

(−1)j
(
m − h

i

)(
h

j

)
(x2 + z2)m−h−i (y2 + z2)h−j (2βz)i+j

=
m∑

h=0

amh

m−h∑
i=0

(
m − h

i

)
(x2 + z2)m−h−i (2βz)i

×
h∑

j=0

(−1)j
(
h

j

)
(y2 + z2)h−j (2βz)j

=
m∑

h=0

amh (x
2 + z2 + 2βz)m−h(y2 + z2 − 2βz)h.

Working in a similar way to the above calculations, we obtain

f =
m∑
i=0

ami (x
2 + z2 + 2βz)m−i (y2 + z2 − 2βz)i

+
m−1∑
i=0

am−1
i (x2 + z2 + 2βz)m−1−i (y2 + z2 − 2βz)i

+
m−2∑
i=0

am−2
i (x2 + z2 + 2βz)m−2−i (y2 + z2 − 2βz)i

+ · · ·

+
2∑

i=0

a2
i (x

2 + z2 + 2βz)2−i (y2 + z2 − 2βz)i

+a1
0(x

2 + z2 + 2βz) + a1
1(y

2 + z2 − 2βz)

=
m∑

h=1

h∑
i=0

ahi (x
2 + z2 + 2βz)h−i (y2 + z2 − 2βz)i .

By the arbitrariness ofm and ahi , we obtain the two polynomial first integralsH1 = x2 +z2 +2βz
and H2 = y2 + z2 − 2βz. This proves statement (a) of the theorem.

Subcase 2: α �= 0 and (m − i)ami + (i + 1)ami+1 = 0 for i = 0, 1, . . . , m − 1. So we have

ami = (−1)i
(
m

i

)
am0 i = 1, 2, . . . , m. (15)

Hence

f2m =
m∑
i=0

(−1)i
(
m

i

)
am0 (x

2 + z2)m−i (y2 + z2)i = am0 (x
2 − y2)m.
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Moreover, from (11) and (15) we have

f2m−1 =
m−1∑
i=0

2(m − i)ami (x
2 + z2)m−1−i (y2 + z2)i(2βz)

= 2
m−1∑
i=0

(m − i)(−1)i
(
m

i

)
am0 (x

2 + z2)m−1−i (y2 + z2)i(2βz)

= 2
m−1∑
i=0

(−1)im

(
m − 1

i

)
am0 (x

2 + z2)m−1−i (y2 + z2)i(2βz)

= 4βmam0 (x
2 − y2)m−1z.

Substituting f2m−1 and f2m into equation (8) with i = 2m − 2, we obtain

yz
∂f2m−2

∂x
+ xz

∂f2m−2

∂y
− xy

∂f2m−2

∂z
= −βy

∂f2m−1

∂x
+ βx

∂f2m−1

∂y
− α

∂f2m

∂z

= −16am0 m(m − 1)β2(x2 − y2)m−2xyz.

Using the transformation (4) and (5) and working in a similar way to the proof in subcase 1,
we obtain

f2m−2 = 16am0
m(m − 1)

2!
β2(x2 − y2)m−2z2 +

m−1∑
i=0

am−1
i (x2 + z2)m−1−i (y2 + z2)i .

Substituting f2m−2 and f2m−1 into equation (8) with i = 2m − 3, we obtain

yz
∂f2m−3

∂x
+ xz

∂f2m−3

∂y
− xy

∂f2m−3

∂z
= −βy

∂f2m−2

∂x
+ βx

∂f2m−2

∂y
− α

∂f2m−1

∂z

= −64am0 β
3(m − 2)

(
m

2

)
(x2 − y2)m−3z2xy

−
m−2∑
i=0

2β
[
(m − 1 − i)am−1

i − (i + 1)am−1
i+1

]
(x2 + z2)m−2−i (y2 + z2)ixy

−4mam0 αβ(x
2 − y2)m−1.

In a similar way to the computations in subcase 1, we obtain

f 2m−3 = 64am0 β
3

(
m

3

)
(u − v)m−3w3

+
m−2∑
i=0

2β
[
(m − 1 − i)am−1

i − (i + 1)am−1
i+1

]
um−2−iviw

+4mam0 αβ(u − v)m−1
∫

dw

(±√
u − w2)(±√

v − w2)
+ f

∗
2m−3(u, v).

In order for f2m−3(x, y, z) = f 2m−3(u, v,w) to be a homogeneous polynomial in x, y and z

of degree 2m − 3, we must have f
∗
2m−3(u, v) = 0 and β = 0. Hence, we obtain

f2m−3(x, y, z) ≡ 0.
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Equation (8) with i = 2m − 4 now is

yz
∂f2m−4

∂x
+ xz

∂f2m−4

∂y
− xy

∂f2m−4

∂z
= −α

∂f2m−2

∂z

= −
m−1∑
i=0

2α
[
(m − 1 − i)am−1

i + (i + 1)am−1
i+1

]
(x2 + z2)m−2−i (y2 + z2)iz.

In order to obtain a homogeneous polynomial solution of degree 2m− 4 of this equation,
from the integrating formula (13) we must have

(m − 1 − i)am−1
i + (i + 1)am−1

i+1 = 0 i = 0, 1, . . . , m − 1.

Hence

f2m−2 = am−1
0 (x2 − y2)m−1

f2m−4 =
m−2∑
i=0

am−2
i (x2 + z2)m−2−i (y2 + z2)i .

By recursive calculations we can obtain that

f2m−2s = am−s
0 (x2 − y2)m−s f2m−2s−1 ≡ 0 for s = 0, 1, . . . , m − 1

where am0 �= 0, ai0 for i = 1, 2, . . . , m − 1 is an arbitrary constant. Therefore, we have

f =
m∑
i=1

ai0(x
2 − y2)i .

So, H = x2 − y2 is a polynomial first integral. This proves statement (b) of the theorem.

Case 2: µ �= 0 and (m − i)ami + (i + 1)ami+1 = 0 for i = 0, 1, . . . , m − 1. Then, we have

f2m = am0 (x
2 − y2)m f2m−1 = 4βmam0 (x

2 − y2)m−1z.

Equation (8) with i = 2m − 2 can be written as

yz
∂f2m−2

∂x
+ xz

∂f2m−2

∂y
− xy

∂f2m−2

∂z

= (µx − βy)
∂f2m−1

∂x
+ (µy + βx)

∂f2m−1

∂y
− 2mµf2m−1 − α

∂f2m

∂z

= −8βµmam0 (x
2 − y2)m−1z − 16β2m(m − 1)am0 (x

2 − y2)m−2xyz.

Working in a similar way to the proof of case 1, we obtain

f2m−2(x, y, z) = f 2m−2(u, v,w) = 4µmβam0 (u − v)m−1
∫

dw2

(±√
u − w2)(±√

v − w2)

+16β2

(
m

2

)
am0 (u − v)m−2w2 + f

∗
2m−2(u, v)

where f
∗
2m−2 is an arbitrary function in u and v. Since f2m−2 is a polynomial in x, y and z,

we find from (13) that β = 0 and

f2m−2(x, y, z) =
m−1∑
i=0

am−1
i (x2 + z2)m−1−i (y2 + z2)i .
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Substituting f2m−2 and f2m−1 into equation (8) with i = 2m − 3, we obtain

yz
∂f2m−3

∂x
+ xz

∂f2m−3

∂y
− xy

∂f2m−3

∂z
= µx

∂f2m−2

∂x
+ µy

∂f2m−2

∂y
− 2mµf2m−2 − α

∂f2m−1

∂z

= −2µ
m−1∑
i=0

am−1
i (x2 + z2)m−1−i (y2 + z2)i

−2µ
m−2∑
i=0

[
(m − 1 − i)am−1

i + (i + 1)am−1
i+1

]
(x2 + z2)m−2−i (y2 + z2)iz2.

Working in a similar way to the proof of case 1, in order to obtain a homogeneous polynomial
solution of degree 2m− 3 of this equation, we must have am−1

i = 0, i = 0, 1, . . . , m− 1, and
then f2m−2 ≡ 0 and f2m−3 ≡ 0.

By recursive calculations we can obtain from equations (8) and (9) that fi ≡ 0 for
i = 2m − 4, 2m − 5, . . . , 2, 1. Therefore,

f = am0 (x
2 − y2)m

whose cofactor is k = −2mµ.
From proposition 4, it follows that the irreducible Darboux polynomials of the Rikitake

system are f = x+y with the cofactor k = z−µ and f = x−y with the cofactor k = −z−µ.
This proves statement (c) of the theorem under the conditions β = 0 and µ �= 0.

Now we consider the case in which the cofactor is non-constant. According to the proof
of proposition 1, without loss of generality, we can assume that f is a Darboux polynomial of
degree 2m + r (respectively, 2m − r) with cofactor k = rz + c if r is a positive (respectively,
negative) integer, and that

f =
2m+r∑
i=0

fi

(
respectively, f =

2m−r∑
i=0

fi

)

where fi is a homogeneous polynomial of degree i, and

f2m+r = (x + y)r
m∑
i=0

ami (x
2 + z2)m−i (y2 + z2)i (16)

respectively

f2m−r = (x − y)−r
m∑
i=0

ami (x
2 + z2)m−i (y2 + z2)i . (17)

First we consider the case r > 0. Substituting f and k into equation (1) and identifying
the terms of same degrees, we obtain

yz
∂f2m+r

∂x
+ xz

∂f2m+r

∂y
− xy

∂f2m+r

∂z
= rzf2m+r (18)

yz
∂f2m+r−1

∂x
+ xz

∂f2m+r−1

∂y
− xy

∂f2m+r−1

∂z
= rzf2m+r−1 + (µx − βy)

∂f2m+r

∂x

+(µy + βx)
∂f2m+r

∂y
+ cf2m+r (19)
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yz
∂fi

∂x
+ xz

∂fi

∂y
− xy

∂fi

∂z
= rzfi + (µx − βy)

∂fi+1

∂x
+ (µy + βx)

∂fi+1

∂y
+ cfi+1 − α

∂fi+2

∂z
(20)

cf0 − α
∂f1

∂z
= 0 (21)

for i = 2m + r − 2, 2m + r − 3, . . . , 2, 1, 0.

From proposition 1, equation (18) has a solution of the form (16). Introducing (16) into
equation (19) and doing some computations we obtain

yz
∂f2m+r−1

∂x
+ xz

∂f2m+r−1

∂y
− xy

∂f2m+r−1

∂z

= rzf2m+r−1 + (x + y)r
m∑
i=0

[(r + 2m)µ + c]ami (x
2 + z2)m−i (y2 + z2)i

+(x + y)r−1(x − y)

m∑
i=0

rβami (x
2 + z2)m−i (y2 + z2)i

−(x + y)r
m−1∑
i=0

2µ
[
(m − i)ami + (i + 1)ami+1

]
(x2 + z2)m−i−1(y2 + z2)iz2

−(x + y)r
m−1∑
i=0

2β
[
(m − i)ami − (i + 1)ami+1

]
(x2 + z2)m−i−1(y2 + z2)ixy.

We consider the transformations (4) and (5). As in the proof of proposition 1, we now select
xy < 0. Without loss of generality, we can assume that x = √

u − w2 and y = −√
v − w2.

From the above equation we obtain√
u − w2

√
v − w2

df 2m+r−1

dw
= rwf 2m+r−1

+
(√

u − w2 −
√
v − w2

)r m∑
i=0

[(r + 2m)µ + c]ami u
m−ivi

+
(√

u − w2 −
√
v − w2

)r−1(√
u − w2 +

√
v − w2

) m∑
i=0

rβami u
m−ivi

−(√u − w2 −
√
v − w2

)r m−1∑
i=0

2µ
[
(m − i)ami + (i + 1)ami+1

]
um−i−1viw2

+
(√

u − w2 −
√
v − w2

)r m−1∑
i=0

2β
[
(m − i)ami − (i + 1)ami+1

]

×um−i−1vi
√
u − w2

√
v − w2. (22)

This is a linear ordinary differential equation in f2m+r−1. The corresponding homogeneous
equation

√
u − w2

√
v − w2

df
∗
2m+r−1

dw
= rwf

∗
2m+r−1

has a general solution

f
∗
2m+r−1 = (√

u − w2 −
√
v − w2

)r
A

∗
2m−1(u, v)
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where A
∗
2m−1(u, v) is an arbitrary function in u and v. In order to use the method of variation

of constants, we assume that

f 2m+r−1 = (√
u − w2 −

√
v − w2

)r
A2m−1(u, v,w)

is a solution of (22), then A2m−1(u, v,w) satisfies

dA2m−1

dw
=

m∑
i=0

[(r + 2m)µ + c]ami u
m−ivi

1√
u − w2

√
v − w2

+
m∑
i=0

rβami u
m−ivi

√
u − w2 +

√
v − w2

√
u − w2

√
v − w2(

√
u − w2 − √

v − w2)

−
m−1∑
i=0

2µ
[
(m − i)ami + (i + 1)ami+1

]
um−i−1vi

w2

√
u − w2

√
v − w2

+
m−1∑
i=0

2β
[
(m − i)ami − (i + 1)ami+1

]
um−i−1vi.

Since∫ √
u − w2 +

√
v − w2

√
u − w2

√
v − w2(

√
u − w2 − √

v − w2)
dw

= u + v

u − v

∫
dw√

u − w2
√
v − w2

− 2

u − v

∫
w2 dw√

u − w2
√
v − w2

+
2

u − v

∫
dw.

In order for A2m−1(x, y, z) = A2m−1(u, v,w) to be a homogeneous polynomial of degree
2m − 1, we must have

[(r + 2m)µ + c]ami = 0 i = 0, 1, . . . , m

rβami = 0 i = 0, 1, . . . , m

2µ
[
(m − i)ami + (i + 1)ami+1

] = 0 i = 0, 1, . . . , m − 1.

(23)

Therefore, we obtain that

c = −(r + 2m)µ β = 0

otherwise ami = 0 for i = 0, 1, . . . , m, and so f2m+r ≡ 0. Hence, A2m−1(x, y, z) =
A2m−1(u, v,w) = A2m−1(u, v) ≡ 0, and then

f2m+r−1(x, y, z) = f 2m+r−1(u, v,w) ≡ 0.

Substituting f2m+r−1 and f2m+r into (20) with i = 2m + r − 2, we obtain

yz
∂f2m+r−2

∂x
+ xz

∂f2m+r−2

∂y
− xy

∂f2m+r−2

∂z
= rzf2m+r−2 − α

∂f2m+r

∂z

= rzf2m+r−2 − (x + y)r
m−1∑
i=0

2α
[
(m − i)ami + (i + 1)ami+1

]
×(x2 + z2)m−1−i (y2 + z2)iz.
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Working in a similar way to the proof of f2m+r−1, from this equation we obtain the ordinary
differential equation

√
u − w2

√
v − w2

df 2m+r−2

dw
= rwf 2m+r−2 − (√

u − w2 −
√
v − w2

)r

×
m−1∑
i=0

2α
[
(m − i)ami + (i + 1)ami+1

]
um−1−iviw.

The corresponding homogeneous equation has the general solution

f
∗
2m+r−2 = (√

u − w2 −
√
v − w2

)r
A

∗
2m−2(u, v).

Let

f 2m+r−2 = (√
u − w2 −

√
v − w2

)r
A2m−2(u, v,w)

be a solution of the previous linear ordinary differential equation. Then the function A2m−2

satisfies the following equation:

dA2m−2

dw
= −

m−1∑
i=0

2α
[
(m − i)ami + (i + 1)ami+1

]
um−1−ivi

w√
u − w2

√
v − w′ 2

.

In order that A2m−2(x, y, z) = A2m−2(u, v,w) is a homogeneous polynomial in x, y and z,
we should have

α
[
(m − i)ami + (i + 1)ami+1

] = 0 i = 0, 1, . . . , m − 1 (24)

and A2m−2(u, v,w) = A2m−2(u, v) = A2m−2(x
2 + z2, y2 + z2). Therefore,

f2m+r−2 = (x + y)r
m−1∑
i=0

am−1
i (x2 + z2)m−1−i (y2 + z2)i .

Introducing f2m+r−2 and f2m+r−1 into equation (20) with i = 2m + r − 3 and doing some
computations, we obtain

yz
∂f2m+r−3

∂x
+ xz

∂f2m+r−3

∂y
− xy

∂f2m+r−3

∂z

= rzf2m+r−3 + µx
∂f2m+r−2

∂x
+ µy

∂f2m+r−2

∂y
− (r + 2m)µf2m+r−2

= rzf2m+r−3 − (x + y)r
m−1∑
i=0

2µam−1
i (x2 + z2)m−1−i (y2 + z2)i

−(x + y)r
m−2∑
i=0

2µ
[
(m − 1 − i)am−1

i + (i + 1)am−1
i+1

]
×(x2 + z2)m−2−i (y2 + z2)iz2.

Working in a similar way to the proof of f2m+r−1, we obtain that

µam−1
i = 0 i = 0, 1, . . . , m − 1

µ
[
(m − 1 − i)am−1

i + (i + 1)am−1
i+1

] = 0 i = 0, 1, . . . , m − 2
(25)
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and so

f2m+r−3(x, y, z) ≡ 0.

Equation (20) with i = 2m + r − 4 now can be written as

yz
∂f2m+r−4

∂x
+ xz

∂f2m+r−4

∂y
− xy

∂f2m+r−4

∂z
= rzf2m+r−4 − α

∂f2m+r−2

∂z

= rzf2m+r−4 − (x + y)r
m−2∑
i=0

2α
[
(m − 1 − i)am−1

i + (i + 1)am−1
i+1

]
×(x2 + z2)m−2−i (y2 + z2)iz.

In a similar way to the proof of f2m+r−2 we obtain

α
[
(m − 1 − i)am−1

i + (i + 1)am−1
i+1

] = 0 i = 0, 1, . . . , m − 2 (26)

and

f2m+r−4 = (x + y)r
m−2∑
i=0

am−2
i (x2 + z2)m−2−i (y2 + z2)i .

By recursive calculations we obtain

f2m+r−2s+1 = 0 s = 3, 4, . . . , m

f2m+r−2s = (x + y)r
m−s∑
i=0

am−s
i (x2 + z2)m−s−i (y2 + z2)i s = 3, 4, . . . , m

fj = 0 j = 0, 1, 2, . . . , r − 1

with conditions

µa0
0 = 0 (27)

and for s = 2, 3, . . . , m − 1

µam−s
i = 0 i = 0, 1, . . . , m − s

µ
[
(m − s − i)am−s

i + (i + 1)am−s
i+1

] = 0 i = 0, 1, . . . , m − s − 1

α
[
(m − s − i)am−s

i + (i + 1)am−s
i+1

] = 0 i = 0, 1, . . . , m − s − 1.

(28)

Summing up the above results, we find from conditions (23)–(28) that if f is a Darboux
polynomial of degree 2m + r with a non-constant cofactor, then one of the following three
cases holds:

(1) β = µ = α = 0, and

f = (x + y)r
m∑
s=0

m−s∑
i=0

am−s
i (x2 + z2)m−s−i (y2 + z2)i

is a Darboux polynomial with the cofactor k = rz.
(2) β = µ = 0, α �= 0 and

f = (x + y)r
m∑
s=0

am−s
0 (x2 − y2)m−s

is a Darboux polynomial with the cofactor k = rz.
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(3) β = 0, µ �= 0 and

f = (x + y)r(x2 − y2)m

is a Darboux polynomial with the cofactor k = rz − (r + 2m)µ.

Working in a similar way as in the proof of the case of r being a positive integer, when
r is a negative integer we find that if f is a Darboux polynomial of degree 2m − r with a
non-constant cofactor, then one of the following three cases holds:

(1) β = µ = α = 0, and

f = (x − y)−r
m∑
s=0

m−s∑
i=0

am−s
i (x2 + z2)m−s−i (y2 + z2)i

is a Darboux polynomial with the cofactor k = rz.
(2) β = µ = 0, α �= 0 and

f = (x − y)−r
m∑
s=0

am−s
0 (x2 − y2)m−s

is a Darboux polynomial with the cofactor k = rz.
(3) β = 0, µ �= 0 and

f = (x − y)−r (x2 − y2)m

is a Darboux polynomial with the cofactor k = rz − (−r + 2m)µ.

From proposition 4 and statements (a) and (b) of this theorem, we obtain that if f is an
irreducible Darboux polynomial of the Rikitake system, then β = 0, and f = x + y with the
cofactor k = z − µ and f = x − y with the cofactor k = −z − µ.

This proves the ‘only if’ part of the theorem. The ‘if’ part follows from an easy
computation. This completes the proof of the theorem. �

4. Conclusion

In this paper we characterize the Darboux polynomials, the polynomial first integrals, the
rational first integrals, the invariant, and the algebraic integrability of the Rikitake systems.
Thus the main results are the following:

(a) The Rikitake system has Darboux polynomials if and only if β = 0. The irreducible
Darboux polynomials are f1 = x + y with the cofactor k1 = z − µ, and f2 = x − y with
the cofactor k2 = −z − µ.

(b) The Rikitake system has a polynomial first integral if and only if either µ = α = 0, or
µ = β = 0 and α = 0.

1. If µ = α = 0, the generators of polynomial first integrals are H1 = x2 + z2 + 2βz
and H2 = y2 + z2 − 2βz.

2. If µ = β = 0 and α = 0, the generator of polynomial first integral is H = x2 − y2.

(c) The Rikitake system has a rational first integral if and only if either µ = α = 0, or
µ = β = 0 and α = 0.

(d) The unique irreducible invariant (also called integral of motion) is (x2 − y2) exp(−2µt)
when β = 0.

(e) The Rikitake system is algebraically integrable if and only if µ = α = 0.

We remark that Labrunie and Conte [10] proved that (x2 − y2) exp(−2µt) is an invariant
of the Rikitake system when β = 0. Here we prove that it is unique.
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